

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE HONOURS		
QUALIFICATION CODE: 08BOSH	LEVEL: 8	
COURSE CODE: MAP 821S	COURSE NAME: MATERIALS PHYSICS	
SESSION: JANUARY 2023	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER(S)	Prof Dipti R. Sahu			
MODERATOR:	Dr Zivayi Chiguvare			

INSTRUCTIONS		
1.	Answer all five questions.	
2.	Write clearly and neatly.	
3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Questi	on 1	[10]		
1.1	What is hardness? Mention any two types of hardness measurements?	(2)		
1.2	Consider a cylindrical nickel wire 2.0 mm in diameter and 3×10^4 mm long. Calculate its elongation when a load of 300 N is applied. Assume that the deformation is totally elast for Ni, E = 207 GPa.			
1.3	What is the classification of the engineering materials? Explain the materials in brief.	(4)		
Question 2				
2.1	Explain photoconductivity process in a semiconductor.	(2)		
2.2	Determine the penetration depth of the primary electrons in ZnS for an incident beam of energy of 10 keV. Given that $K = 1.2 \times 10^{-4}$ and $b = 0.0175$	(4)		
2.3	What is the meaning of optical materials? How you classify optical materials into different categories, Mention the categories and explain.	(4)		
Question 3				
3.1	The thermal conductivity of a plain carbon steel is greater than for a stainless steel. Why is this so?	(2)		
3.2	A cuboid room is perfectly isolated on all sides, except one. This side, 6m long and 2m high, is 25cm thick and shows a heat conductivity of 0.8W/(Km). The wall has no windows. The temperature of the inner wall surface is 10°C, the temperature of the outer wall surface is -10°C. Calculate the heat flow through the wall?	(4)		
3.3	What is thermal shock resistance? Thermal shock behaviour is affected by which factors	s? (4)		
Questi	on 4	[10]		
4.1	What do you mean by dielectric constant of a materials	(2)		
4.2	A solid contains 5×10^{28} atoms/m³ each with a polarisability of 2×10^{-40} F m². Assuming that the internal field is given by Lorentz formula. Calculate the ratio of internal field to the external field. $\epsilon_0 = 8.854 \times 10^{-12}$ Fm ⁻¹ .	(4)		
4.3	What is Piezoelectricity? Give an example of piezoelectric materials and its applications.	(4		
Question 5 [10				
5.1	Explain the terms polymer and monomer	(2)		
5.2	How are Polymer classified based on structure? Give representation of each polymer	(4)		
5.3	What are thermosetting and thermoplastic polymer? Give example for each.	(4)		

Questi 6.1	on 6 Mention what is the primary mineral in glass products? What is fused silica glass?	[10]			
6.2	Calculate the density in grams per cubic centimetre of $SrSnO_3$ ceramic, which has the perovskite structure. Ionic radii are $Sr^{2+}=0.127$ nm, $Sn^{4+}=0.074$ nm, and $O^{2-}=0.132$ nm Assume the lattice constant $a=2(r_{Sn4+}+r_{O2-})$	(4)			
6.3	What are some of the properties common to most ceramic materials? Distinguish between traditional and engineering ceramic materials and give examples of each.	(4)			
Question 7.1	on 7 What is Domain wall energy (or) Bloch wall energy?	[10]			
7.2	The saturation magnetic induction of Nickel is $0.65~\rm Wb~m^{-2}$. If the density of Nickel is $8906~\rm kg~m^{-3}$ and its atomic weight is 58.7 , calculate the magnetic moment of the Nickel atom in Bohr magnetron.	(4)			
7.3	Explain different types of magnetic materials in brief?	(4)			
Question 8.1	on 8 What is a composite ?	[10] (2)			
8.2	A continuous and aligned glass fiber-reinforced composite consists of 40 vol% of glass fibers having a modulus of elasticity of 69 GPa and 60 vol% of a polyester resin that, when hardened, displays a modulus of 3.4 GPa. Compute the modulus of elasticity of this composite in the longitudinal direction	(4)			
8.3	What are the functions of a reinforcement in a composite?	(4)			
Questi	Question 9 [10				
9.1	Justify, is compound semiconductor can be an intrinsic semiconductor?	(2)			
9.2	In a P-type Si sample the hole concentration is $2.25 \times 10^{15}/cm3$. The intrinsic carrier Concentration is $1.5 \times 10^{10}/cm^3$. Calculate the electron concentration	(4)			
9.3	Compare silicon and gallium arsenide semiconductors relative to properties and applications?	(4)			
Question 10.1	on 10 What do you mean by linear and planar densities	[10] (2)			
10.2	Calculate the equilibrium number of vacancies per cubic meter for copper at 1000° C. The energy for vacancy formation is 0.9 eV/atom: the atomic weight and density (at 1000° C) for copper are 63.5 g/mol and 8.4 g/cm³, respectively	(4)			
10.3	Explain the difference in electrical conductivity for metals, semiconductors, and insulators in terms of their electron energy band structures.	(4)			
	Fnd				